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1. Quadratic algebrags. Let k be a field and A = &E;O A
a graded k-algebra. An algebra A is called "“quadratic*" if

the following holds:

(i) dimk ﬂi < oo forall i3z O

(ii) A, is a semi-simple k-algebra

(iii) A is generated by A, and A,

(iv) The ideal of relations (among generators of A) is gene-

rated by elements of degree 2.

The gtructure of an algebra A subject to (i)-(iv) can be
spelled out as follows. Let V = A1 be a Ao-bi-module and
let TV = AO eV ®AOV eV @A v ®A V& ... be its tensor al-

o
gebra over A . Then, A = py/(W) where (W) denoteg the two-
gsided ideal of TV, generated by a Ao-sub-bimodule W Ve, V.

o

Conversely, given Ao, a bi-module V and W< V@AV, one can

form & quadratic algebra TV/{(W). ¢

The dual A° of & quadratic algebra A = TV/{W) is de-
fined as follows. The space ' $s= Homk (V, k) has a natural
A -bimodule structure (with the roles of right- and left~hend
actlons reversed). Let Wlic v @h = (Vv ®y V) be the or-

thogonal complement to W, Set &- = TV /(Hi). This is also

a quadratic algebra.
Given a quadratic algebra A we view Ao as & A~module

via the augmentation: A — A/Q A, A
i>0 i

The bi-graded space K(A) = A @, (4°)" hes a natural
o

gtructure of a projective left A-module and of injective right
L]
A’-module with an augmentation: K(4) — A, — 0. Ve endow

-
K(A) with a differential d, teking A; ® (A’) to A; 4 @ (A )*

and commuting with the A-p® -action, as follows. Let
e e HomA v, v) = v QL V  be the identity element. It can be

viewed as an element of A' @ A< Al @ A
2 !
Lemma, e“ = 0 in & mk A (= a tensor product of algebras).

Hence, the multlpllcation by e on the right gives a
differential on A° Gh A, Ve let d be the differential on

‘ z k3
K(4) = Hom right A-action (4 Gh A, A) = A ®1 A%, deflned by

(af)(x) = £(x-e), x ¢ A' ®A. The dlfferentlal A-A* _module
(K(A), d) is called the Koszul complex of A.
Here is an elternative explicit construction of K(A) in
terms of V and WcV @, V (recall that A = TV/(W)). Let
[o]

®i v@(i-ﬁj&Z)’

iy ;
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For each n obvious embeddings give rise to a complex:
k) o LML g, L k™0,

If n = 3, for instance, then we have:

K3 L 0 @M N (VoW VoW — PIe v —
-V WeVv+VawW —o

Ve also let, by definition, K(o) : 0 — A - 0 and K(T) t 0 -
~ V5 V— 0. One cen check that the Koszul complex (K(A),d)
1?n§somorphlc to the direct sum @nzo K(n of the complexes
K

Let A @ AT be the direct sum decompogition of A
into simple algebras. Each AT has a unique simple left (resp.
right) A -module. Simple Onblmodules are, hence, labelled



i
by couples (r, s). So let [v©»® } be the complete collection
of simple —blmodules. Recall, further, thet a component A
i =0, 1, 2,... of A is a A —blmodule. We define the
(matrix valued) Poincaré series of A by

o .
P.o(A, %) = 2 tt . i T>8
r,s( s %) o dim Hoonm AO(V , Ai)
Theorem 1.1. (cf. TN in Math., N1{83). The following con-
ditions on a quadratic algebra A are equivalent

(1) R4, %)* P(A®, ~8) = 1 (uetrix identity) ;

(ii) There is a graded resolution: O 4= Ry ¢ Py = P, ...
where Pi ig a projective A—module gener&ted by ele~-
nents of degree (-i)

(iii) The Koszul complex K(A) is exact , i.e., the comp~

lexes K'®/ are exact for all n > 0

(iv) For each n the subspaces” W' < yoR (4 +j=n-2 )

generate a digtributive lattlce, that isg, there is a

base of V®® guch that any W’J 1s!hzspan ol some

base vectors ;
*

(v) 7The algebra ExtA(Ao, AO) is generated by ExtA(AO, A)

o
over A (:HomA(AO, AD).

Definition 1.2. A quadratic algebra is called formal if
the equivalent conditions (i)-(v) hold.

Propogition 1.3. A quadratic algebra is formal iff there
is a graded algebra isomorphism: A® =% Extz(Ao, Ad.

Corollary 1.4. A is formal iff A° is formal.

Remark, Formal algebras (in the special case Al = k)
were first considered by Priddy (1970), who called them Koszul
algebras (cf. LN N°1183). We prefer the name "formal® for the
following reason:

Provposition 1.5. If A is formal then the differential
graded algibra R Hom, (A , A ) is quasi-isomorphic to the al~
gebra Ext, (Ao, Ao) with the trivial differential,

The proof of 1.5 is based on weight considerations, app-
lied to minimal models (see Deligne "Theorie de Hodge III").

—~4-

2. Some exampleg of formel algebras. Throughout this sec-
tion only formal algebras A with A =k are consldered. Let
V denote & finite-~dimensional k—vector space and v , The
dual space.

2.1« A = TV, the tensor algebra. A* = k ® V' (with tri-
vial multiplication).

2.2. A = 5V, the symmetric algebra. Then A: = j&V*, the
Grassmam algebra. Thig example was first considered by J.Bern-
gtein, I.Gel'fand and S.Gel'fand in their work om coherent
sheaves on B"., It was the starting point for our present re-
gsearch.

(after conversation with V.Drinfeld). Let R: V@ V —

- V@®V be a congtant unitary R-matrix, i.e. a solution to
the Yang-Baxter equation: R12' R23' R12 = RZB' R12' R23
together with the unltardycondltlon' R? = identity. Here rHJ
is an operator in V® , acting identically on the factor V
not named in the superscript.

Let A be the quotient of TV modulo relations ;
xey - Rxey) = 0, (x,y € V). This is a formal algebra (Za~-
molodchikov algebra}, which is an R-analog of SV, The algeb-
ra A is equal to the quotient of IV modulo relations
xoy + Rlxeoy) =

2.4, Let g be a Lie slgebra over k, U(g) the envelop-
ing algebra of g and k =U CZIH < ... the standard filtra-
tion on U(g). Tet A Ztl' U; Dbe a subalgebra of U(g) ®
k{tl. Then A is a graded quadr&tic algebra with generators

X = t+x, (x ¢ g) and 1+, subject to the relations:
~ o~ ~ Vot g

XoF -~ §oX = ¢t +[x, y] eand [X, tl=0

A is formal. The algebra Al is the cross-~product of /1g*
with 2-dimensional algebra Ak = k © kee. The cross-product
ig determined by the following relations: e-w - (_1)degqco. e =
dw, (we jxg*), where d denotes the Kosgzul complex diffe-
rential in A g*.

2.5. (M. Kapranov) Let k = € and let Q;,...,Q, be
quadratic forms on V. Suppose that X = {Q,= o}n... n{q, = o}
is a complete intersection of quadrics, so that =n ¢ dim V.
Then the coordinate ring kIX] is a formal algebra. The al-

* To appear in the USSR Izvestia
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esey B

gebra A' has generators x ¢ V and also h -

(deg h; = 2) satisfying the relations:

1°

x2 = Q1(X)‘h1 + oo + Qn(x)-hn

In fact, one can deduce that (x, h;1 = 0. If n =1 then A°
is the Clifford algebra.

More genereally, let Y Dbe a projective variety over €,
let i : Y < @' be an embedding end e ™1 the corres-
ponding cone over Y. HM.Kapranov has recently shovn (o appear)
that for a given Y one can always find an embedding i in

such a way that the algebra ¢ [fﬂ is formal.

2.6. Let } Hi} be a finite collection of hyperplanes
in an affine space A" over €. Set X = ﬂN\(Ui H;). Using
the work of Orlik-Solomon one can prove

Provosition 2.6. Suppose that 5 ;(X) ere torsion-groups
for all i > 1. Then the cohomology H (X, Q)
algebra.

Example. {H;) )
from a root system on A .,
that 2.6 holds.

Remark. Given any finite collection [Hi} one can always
add to it a finite pumber of other hyperplanes {H!} so that
AU URD =0 for  noi, The 1imit
case X =A \(;ig V) Hi) is important in studying motivic coho-
mology. B

If 2.6 holds then the algebra A = H*(XJ has generators
5 The defining relations among
them (besides anti-commutativity) are:

is a formal

is a collection of hyperplanes arising
Then m’i(X) =0 for i >1 so

x one for each hyperplane Hi.

Rt Xg + XyeXy + XXy = 0 for eveiy triple (Hi, Hj' Hk)
such that dim (Hi n Hs. n H}c) = dimA - 2.

Further, AY = U(g), where g is a graded nilpotent Iie
algebra with generators Y5, one for each hyperplane Hi' The
relations among then correspond to pairs (Hi, L), where 1L
is a 1-codimensional subspace of Hi guch that L = Hi n Hj
for some Hj' The relation, attached to a flag (Hi’ L) is

B
(¥, Z yJ,J = 0 (the sum of ¥; over all Hj containing L)

The Lie algebra g can be interpreted as the Lie algebra of
the Lie group, arising from the nilpotent completion of 971(X).

2.7. The Steenrod algebra is formal [ Priddy3.

3. Mixed caterories. Let k be a field and let C denote
an abelian k-category (that is a category having k-vector spa-
ce structure on Hom's) equipped with an increasing filtration
Vg, (i ¢« 2) on objects of C. The category is called mixed,
provided the following holda:

(1) Any morphism £ : A —> B (in the category) is strictly
compatible with the filtration, i.e. f(wiA) = f(A)f}wiB.

(1#2) Por any i € Z the full subcategory of C formed by

Grf A AceC ig a semisimple category with

objects
finite~dimensional Hom'g.

(113) TFor any object & there is n> 0 such that WA =43
furthermore Hom{A, B) = 1im Hom(A/wiA, B/wiB)’

We'll assume also an additional axiom

{M4) There is an automorphism T : C —» C, having the property;
T(win) = ”1-1(?“"

The functor T should be thought of as a Tate twist.
However, it shifts the weight filtration W. by 1 and not by
2, as usual. We let T"(A} = Aln).
Remark. The first axiom is equivalent to saying that the func-

tor : A r—o Gr” A is exact.

Exemples.

J.1. The category of mixed Hodge structures is & mixed
category.

3.2. Let Y be an algebraic variety over a finite field
and let Hﬁixed(y) be the abelian category of mixed perverse
Qz—sheaves on Y. This is not a mixed category! However, the
strictly full subcategory of %nixed(y)’ consigting of per-
verse sheaves A, such that the Frobenius action on erA is
gemisimple, is a2 mixed category.

3.3. Let A = ®.0 AY pe e graded k-algebrz such that
dimy A" <o and A° is a semisimple algebra. Let Mod A be

the category of graded A-modules N = @&ez p such that:
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(1) a@im M <o , (i< 2); (ii) ¥ = 0 for i<<0. Then
Mod A igs a mixed category with weight filtration, defined

by WM i=e MY end Tate twist being the grading shift.

3.4. Let A Dbe as in 3.3, We let Proj A be the cate~
gory of complexes: ...~ Pi — P1+1
tiesg: (i) Pi is a graded projective A-module, generated by
(a finite number of) elements of degree i; (ii) differentials
in complexes are compatible with gradings; (iii) P; =0 for
i>>0. Tet W. be the "stupid" filtration on complexes. Then
(Proj A, W.) turns out to be a mixed category with Tate twist,
given by the translation of a complex.

“—%, .+, having the proper-

An object M of a mixed category C is called pure of
weight n if WnM = M and Wn_1M = Oufartinia

Proposition 3.5. Suppose C is a&mlxed category with a
finite number of simple objects of weight 0. Ffmlw=ha-con
hede wibh-nespact ¥.,then C 1is equivalent to the category
Mod A (cf 3. 3) of graded modules over a graded algebra Ac
, Where Ao Va a2 gemisimple algebraJ dm Ag‘ ® o

5,0 4G
Proposition 3.6. ILet M and N be pure objects of C

of weights m and n. Then:

(i) Exté (i, H) = 0 for i > m-n

(i1) Ext™ (M, N) is spanned by products of Ext '
Definition 3.7. A mixed category C is called formal,

provided the following holds: for any pure objects I and Il

Ext (M, N) = 0 for all

of weights m and n one hag:
i # m-n.

Theorem 3.8. A mixed category Mod A (cf. 3.3) is for-
mal iff the algebra A is formel in the sense of 1.2.

Corollary 3.9. If Mod A is a formal category, then A
is a quadratic algebra.

Proposition 3.10. Let ¥ be an object(of a formal cate-
gory )} , having a unique sgimple quotient. Then WiM/Wi_1M is
the meximal semisimple quotient of W, (for any i € 2Z).

Remarks., (i) The only assumption, actually used in the
proof of the proposition is: for pure modules X, LI of weights
k end 1 Ext'(X, L) =0 unless k-1 = 1.

-8-

(ii) The proposition says that the weight filtration on
B coincides withf%o~socle filtration on M,

(iii) Suppose that W, M = 0 for some k € Z end that M
has a unique simple submodule., Then the duel statement holds:
the weight filtration on M coincides withféocle filtration.

lizin theorem 3.11. Let A be a formal algebra. Then the
derived categories D lod A eaend D lod A' of bounded from
¥
above complexes of graded A~ and A‘-modules are equivalent.

Remarks,
3.12. The equlvalence is defined, roughly speaking, vie
the assignment: N — K(A° ) @ M (recall, that the Koszul com=

plex K(A ) has a right A-module structure). It takes simple
A-modules into projective A‘ -modules.

3.13. The heart of D7Mod A, corresponding to a non~stan-
dard t-structure ariging from the standard one on D Mod Ag,
is the abelian category Proj A (cf. 3.4).

3.14. The theorem can be applied to0 all examples, listed
in § 2, In the case 2,2 it reduces t0 a BGG-theorem and in
the case 2.5 gives the result of M. Kapranov.

3.15. We can, in fact, prove a generalization of 3.11,
valid for triengulated mixed categories with t-gtructures ,
that are not arising from abeliasn categories. Such & generali-~
zation is essential for applicationsg to affine Hecke algebras,
for instance.

4. Applicationg to g-modules.

Let g be a complex semisimple Lie algebra with Borel
subalgebra b. ILet 2(g) be the center of U(g), the envelop-
ing algebra, and Z_ the augmentation ideal of 2(g). Let
0 be the category of finitely-generated U{g)-modules M such
that: (i) Z,°il = 03 (ii) the U(b)-action on M is locally
finite.

Let W denote the Weyl group of & M, the Verma module
with the highest weight ~wep -p ( p = half-sum of positive
roots), L, its simple quotient and P the unique indecompos-
able projective cover of Lw. Set I = ewe W L and P =
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=9y cy Pw' The category O ig equivalent fto the category Hence
of finite-type modules over A, := HomO(P, P), a finite dimen- Corollary 4,4. There is a graded algebra structure on
gional algebra. AO = Homo (?, P).

Let X be the Flag manifold associated with g, let
= U X, be the Schubert cell stratification of X and let
T; X denote the conormal bundle to Xw. e recall

The degree O component of AO can be
eagily described as a commutative algebra &%‘zw C'ld? .

" - ) . . Let 1(+) denote the length function on W and 1et

Theorem 4.1 ‘Bellléson—Bernsteln Brylinski-Kashiwarza). y w(t) (y, w € W) be the Kazhden-Lusztig polynomials. Con-
The category O is equivalent to the category of regular holo- 91der a 2[t]-valued matrix Q(t) with entries (%) =
nomic D.-modules (resp. perverse sheaves) whose characterig- 1(w)-1(y) y W

X ‘ = v Y. p -2 - . i
tic varieties are contained in U TZ X. Wt (=2 1 dim Exty (M, L.)).
W The 4.5, -

We define a mixed category Omiyed using4£erecent 1. o orjm §f Thi graded algebra AO (hence, the catego
Seito's theory of mixed Hodge modules. Specifically, let O ;.4 ryualmixed is formal; its Poincard (metrix valued) polynomial

e H
be the category of geomeiric mixed Hodge modules on X whose a 8 .
cheracteristic varietis are contained in L/, TXWX. P (Ag; t) = Q@ (£)- Q%)

Remark. There is & possibility of defining O, ., using Corollary 4.6. Hom, (P, P) is a quedratic algebre with
l-adic mixed sheaves on the Flag variety over a finite field. aly, w generators contalned in each Hom (Py P,) and the
One would then face troubles connected with semisimplicity of same numbe¥;in Hom(Pw, Py) (Here (y, w) is the leading
the Frobenius action. . coefficient of Py,w(t)’ thet is of {the power t1/2(1(W) ~1(y)- 1))

Let F : O . .o — 0 be an obvious functor, forgetting Corollary 4.7. The weight filtrations on Py '8 end I ‘s
the mixed structure, coincide with co-socle filtrations {see 3.10 3CBal ).

Provosition 4.2. The functor F gives rige to an isomor- Corollary 4.8. The modules I and IL_ have projective

W W
phigm: resolutions, such that their i-th term is generated by ele-
Extg (3, @ ¢z N(i)) = Ext (FH, FW), M, N < Opixed ments of weight (-i) (ef. 1.1 (ii)).
mixed 0 The proof of theorem 4.5 is besed on the following two

The objects L, and M have their mixed counterpartsm propositions. Let DR(L) denote the perverse sheaf on X, cor-

L$= € O irear normallze& in such a way that Gr Jﬁ = L. responding to M € Opixed®
m
Clearly, F(Lw) =L, F(Mﬁ) = M. Proposgition 4.9. For any M,N € O mixed -

L .3. The categor 0 . has enough projectives. !

Lemma 4.3 g8ory  Opsved proJ Bxty . (1f, ¥) = weight O part of H (DR(M") ® DR(N))

mixe

Let Pm be the indecomposable projective cover of L On
©omp proj ° € The proposition says, that Ext's in O

. coincide
can show, that F(Pm) = B,. By abusing notatlon&\we'll iden~ mixed
with those in the ambient category of all mixed H

tify Lm with L - etc. ess, dropping the superscript "m" in goxy ¢ odge modules

n X. Ou £ 4. i i i
future. Recall that Peob. o ? proof of 4.8 is based on & reduction technique
. w , developed in [ Be } (end based on a "maximal extension functor"
Consider the graded algebra 4 . q = g Hom (2,P(i)). — s
mixe ileZ Onixed ~.) .Proposition 4.2 follows from 4.9 and from & "non-mixed"
The category O

mixeq I8 equivalent to Iod A . .. Purthermore, version of 4.8 which was established in [ GaJ).

by 4.2, the algebra A . ig, in fact, isomorphic to A..
Y : g mixed ’ ’ P 0 Let X w = DR(LW) be the Intersection cohomology complex

Y with M(1) denoting the square root of the ordinary Tate twist, formally
added for couvenience,
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on Xw' The f£iltration of X by the strata Xw of dimen-
slon ¢ 1 gives rise to a gpectral sequence:
1
* * * .
By, =@, oy (H, &, ®Hwiy):>ﬂfzx®zy) (4.9)

The existence of nice normal slices to Schubert cellg
yields the following

Propogition 4.10. The spectral gequence (4.9) collapses;
moreover,

n HE J
Ext (1, & ) @ 1gen, wew Bz ®§-wzy

is a space of weight n.
It follows from 4.8-4.10 that the algebra A mixed isg
formel and that the dual algebra Amlxed =@ ]thi(L L(i))

has the Poincare polynomial P(A‘med, t) = Q Q. To get 4.5

(see 1.1(1i))
we remark that P(AO,

Purthermore, the inversion formula [KL, 3.1] for Kagzhdan-Ius-
ztig polynomials:
1(z)-1(x)
-1 = P . =
xszz:sy( ) X, 2 woy, woz (S\

shows that the matrix Q(-t)~' coincides with QT(t) up to
the permutation of indexes: =x — WX, where W, is the
longest element of W. That gives 4.5 as well as ithe fol-

lowing surprising

Corollary 4.11. P(Ay: t) = P(A}; t)

4.12. Let J = w < Ul L, be the direct sum of the In-

tersectlon cohomology complexes on all strata X « The algebra
= Ext (Z,%) =K (i@i) hag the follo\n.ng Umicro~local®
1nterpretat:x.on. Let A denote the diagonal of X x X,
TA(X x X) the normal bundle of A in X x X and 1 : A<
T,(X x X}, the zero-section embedding. Let spa(Zmi) be the
Verdier gpecialization of Z®J7, =a perverse sheaf on X x X%,
to A . Thus, SpA(XmZ) 'is a p?rverse sheaf on TA(I{ x X)
and it is clear, that: J®J = i* Sp(JmI). Next, identify
TA(X x X) with TX, the tangent bundle on X. ILet F be a

+) - Pal, )1 = o(-t)~ 1. (1))

-12-

* .
self-dual monodromic perverse sheaf on T X defined as the
Fourier transform of Sp (Zm¥). The complex ¥ is support-

ed on U TX X. Furthermore, if p: T'X — X denotes the
W

projection, then one has:

H(Zed) = H @G’ sp(¥m¥)) = r{*(p,e F) = H' (®)

5. MWhat's next?

Conjecture 5.1 There exists a contravariant {anti)-invo-

lution ®e on mﬁomixed’ the bounded derived category, taking
M to M and interchanging simple and projective
Y wéy =

modules as follows: LyZ:_,’ P“o'y.
5.2. Being a functor on a triangulated category, the invo-
lution of 5.1 must, of course, commute with the translation
functor [+],It should not commute, however, with the Tate
twist (»).0ne should have instead: 2¢ (M(i))=oe(M)(1)(4L],
5.3. The conjecture would yield an algebra isomorphism:
Ay S5 Al
The existence of such an isomorphism is suggested by 4.11,
5.4. The conjecture would give an explanation to the fol-
lowing known results: (i} BGG-reciprocity: (Py : Mw} ] (Mw : Ly);
{ii} the above mentioned inversion formula for the Kazhdan-Lusz-

tig poelynomials.

5.5. Choose a Cartan subalgebra h < b. Let b~ be the

Borel subalgebra of & opposite to b, and 1let Omixed be

the O-~category defined with respect to g‘ It is better, per-

haps, to restate the conjecture, as giving an equivalence:

5 ~. b~ , - -
Omixed —3> D Omixed' taking My to My and Ly and Py.
Such an equivalence is compatible with an ilsomorphism:
E3 *
Ext (M, M ) % Ext (M . A ), {y & w). Both sides here are equal

* -
to HC(B~w N B +y), where w, y are h-fixed points in X and
Brw, B-y denote the orbits of the opposite Borel subgroups,

corresponding to b and b~

5.6. (after conversation with B,Feigin}. There should be



a similar equivalence: 360 = 2%0' for derived 0 -categories
over Kac-Moody algebras. It should exchange modules with central
charges ¢ and (26 - c} and it seems to De connected with
Feigin's duality {defined using the Feigin-Fulks semi-infinite

cohgomology!.

5.7. Let T be a maximal torus of G with Lie algebra
h cb. Any perverse sheaf M €O is, clearly, a T-monodromic
perverse sheaf, relative to the natural T-~action on X. The mo-
nodromy action of ﬂl(T} on M turns out to be unipotent, giv-
ing rise to a nilpotent h-action on M. The same action can be
described in terms of U(g)-modules as a nilpotent part of the
natural §-action, restricted to h. That is, let x denote an
operator on a .§—module M & 0, given by an element of h. The
point is, that the nilpotent part of x commutes with the U{gl-
action. Thus, we get a homomorphism: ‘S(Q} — Homo(M, M). Its
image belongs to the center of Homo(M, M}, since a monodromy

action commutes with Hom's,

Let J denote the ideal of S(h), generated by W-invariants:
S{ﬁ)?. The homomorphism: S(h)—aHom@ﬂMﬁ”ﬁv;al en J. It is li-
kely, in particular, that the resulting map: Sth)/Jd — Homo(?e
Pe). {e ¢ W, the identity) is an algebra isomorphism. Anyway, we

obtain an algebra homomorpbism: S(h}/d — AO = Homo(P, P).
5.7. The natural morphism in 1P(Xl Ly >R Hom{ ol 1o ) »
%
(L =@ ﬁlw) gives rise to an algebra homomorphism: H (X} —

| #
Aé = Ext ( Z’,z j. It is likely to correspond to the above homo-

morphism: S(h)/J — A via our duality 5.2.

0

5.8, Suppose that y ¢ w. Is it true that HOmO(Py, Pw) #0
iff y < w in the sense of Kazhdan-Lusztig (cf. 4.7)7
LR

5.9. Our involution 5.4 seems to be related to the
order reversing involution on the set of primitive ideals, de-
fined by G. Lusztig.

5.10. It seems likely that the category of "mixed Harish-
Chaendra modules”over a real reductive group is formal.
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5+11. Lot us identify the categories O and ModAy » The Verdier du~
ality on O then gives rise $o a grading preserving anti-~involution
X1 Ay —> Age The dual of a Ag-module M is defined to be the right

Ao—module Homc(M,c) endowed with a left Aowmodule structure via the
anti-invelution on AO'

The anti-involution on AO induces g similar ons on Aé . In the pre-
éentation 2 Ags TV/ (W) (see p.1) the involution on Ag = wr/al) is
induced by the map : V" — V", adjoint to »: V — V. There is an
alternative description, based on the presentation : Aé = e Ext (L
Lw) ?nd on self-duality L =L, of simple modules. The anti~1nvolution
on Aé then arises as a comp051te H

* ~ r,_ ¥ * ~ *
BExt (Ly’Lw) — Bxt (I, ,Ly ) === Ext (L, ,Ly )
The isomorphism : AO - Aé of 5.3 18 expected to commute with the
anti-involutions on Ag and Ag »
Let 8,= idP € Ay denote the idempotent ( of degree O ) assoclated

with the proaectlve P € O. Then Ao.e is a projective Ao—module and
", Aooe / one is its simple quotient, correspoanding to Lw' The
- s #*
self~duality of Lw implies that: 8, =00 Applying = %o the vector
space ew-AO-ey g Hom(Pw, F&) we get

Corollary 5.71, Hom(P , P Y= e -Aooey = eyvo-e = Hom(?_, P ),

In parblcular, the Cartan matrlx dim Hom(P, P ) is symmetric ( cf.
(BGG1, [MiV 3] ).
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5.12. Let Vect denote the category of finite~dimension-
al vector spaces. It can be shown easily that any exact func-
tor F : Q0 «— Vect 1is representable, i.e. of the form: M »—
Hom (P, M), where Pr is a projective module determined
by F. Hence P is isomorphic to a direct sum of indecompos-—

able functors F, @ M Homg (Pw, 1),

Given a Bruhat cell Xw, we chooge a point x ¢ Xw and
a holomorphic function £, defined on a neighborhood of x,
such that the covector dfx ig a generic point of 5 X, Let

Sbw : 0 — Vect be the functor, assigning to M « 0 the
gstalk at x of the vanishing cycles gheaf 525f(M). Thig is
known to be an exact functor, commuting with Verdier duality.
Furthermore, one can check thet : § = F,_+ a sum of P 's
with y » w. The multiplicity matrix (?)w : Fy) ig there-
fore unipotent, so that Fw 's can be expregsgsed in terms of

9%# 'Se

eecls It can be ex~

R \IANS0A,

pected, following results 6IfDeligne, MacPherson, Verdier and
others on the extension problem for perverse sheaves, that
there is a combinatorial description of the category of per-
verse sheaves on & stratified space. To be more specific, let
X =1 Z_ Dbe the Brghat cell stratification of X, the Flag
manifold. It is expected thet the algebra € Hom({ ¢_, ¢.)
can be described geometrically and that it is éenerated? fog
instance, by elements &y w € Hom( ¢y’ t;éw), one for each couple
(y, w) such that

N ¥ *
dim (’l'Xy X0 Ty X) = dim ce;yx -1 (5.12. 1)

w
Expressing now 525 ‘s in terms of P 's and using
4.7, we see that Hom( 953,’5%) # 0, provided u(y, w) # 0.
Something seems to be wrong here, however, for it is known
that u(y, w) might happen to be non-trivial even when (5.12.1.)
fails.

- 16 —

5.13. Let 0 denote the category of finitely-generated
U{g)-modules M with the properties: (i} there exists an inte-
ger r = r{M} >> 0 such that Z:-M = 0; {ii) the U{bl)-action

~
on M is locally-finite. Clearly Oc< O and both categories
have the same simple objects Lw.

Let G denote a simply~connected Lie group associated
to & and let B = T+U be the Borel subgroup, corresponding
to b. The projection: ? = G/ ~> X = G/B has a natural
structure of a principal T-bundle, relative to a T-action on
X "on the right". The category O is known {Beilinson-Bern-
stein) to be equivalent to the category of regular monodromic
modules on ? with unipotent monodromy, that are smooth along
B-orbits on Q.

Next, we define 8

mixed ~
dromic geometric mixed Hodge modules on X. Let Pw denote

”~
(P is
W

to be a similar category of mono-
~

"~
an indecomposable projective cover of LH in Omixed

a pro-object, i.e. a projective limit of objects of Omixed)'
o~ ~ ~ ~
Set P = @, Pw and let Aﬁ 2O g Hom{P, P(%})}. The graded
algebra Aﬁ has a natural S(h}-algebra structure, arising
~
from the monodromy-action along the fibres of X — X {this

is not the action, considered in na. 5.7},

We turn now to an analeg of 5.t for omixed' One can
i
not expect to have an isomorphism A ¥ Aap because dim A6 =
\ : 9 6 ¢
=oo , while dim AS = dim Extﬁ (L, N L{1)) <= . To state

#
a correct version, we introduce the torus T , dual to T, a
*
reductive group G , dual to G in the sense of Langlands and
# ®
having T as a maximal torus, a Borel subgroup B , contain-
* # & & *
ing T , and the Flag manifold X = G /B . Let ZH, {(w & W)
denote the Intersection cohomology complex, corresponding to
* # * * x *
the B -orbit X < X , and let & = 2. We view & as
% W g e WTw
a T -equivariant perverse sheaf on X
¥
Let BT denote the universal classifying space for the

* ¥ *
torus T and Ext (Z ,Z }, the T -equivariant Ext-group.

* %
The latter has a natural H (BT }-algebra structure. We recall
#* #*
that H (BT ) ¢ S(h}.

Conjecture 5.13 . There is a graded algebra isomorphism:

PN LI
® Homg (8, Ptin ¢ Ext , (L,%)
tez mixed T
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The the

the

left-hand side should

* #
H {BT }-module struc-

S(b)-module structure on

cerrespond, via the conjecture, to
ture on the right-hand side.
For a general construction of

the reader is referred to {Gi]. In

equivariant Ext~groups

the special case, we need, these
Let : ET. —» BT  de-
note the standard model for a principal universal T*—bundle

# o ® ®
with BT cP Set XT := ET %
T
Let % %
T

denote
the direct sum of the Intersection cohomology complexes on all
#
XT
W

groups can be defined directly as follows.

#
being a product of 's. X

* *
X a subvariety of XT

# k4
and XT = ET .
W

X
W 3
T

¥
This is a perverse sheaf on XT

* ¥
Ext , (£, =
T

's. We set, by definition:

Ext (L ,, & ).
T T

Ve have much benefited from conversations with & number
of people. We are especially grateful to B.Feigin, S.Gel'fand,
M.Konfevich, S.Khoroshkin and V,Shehtmann.
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