
ADAMS-BARBASCH-VOGAN EXPLICITLY

DOUGAL DAVIS

Aim of today: Make the bijection in the ABV correspondence completely explicit.
Plan:

(1) Recollection of the statement (geometric version)
(2) Combinatorics
(3) Examples

1. Recollection of the statement

Fix G and Ǧ dual (pinned) reductive groups. “Pinned” means that G and Ǧ are equipped
with Cartan and Borel subgroups H ⊂ B ⊂ G and Ȟ ⊂ B̌ ⊂ Ǧ, and bases for all the simple
root spaces gα ⊂ g and ǧα ⊂ Ǧ. I will adopt the convention that roots in B and B̌ are negative.
(I think this is the opposite convention to Qixian.) “Dual” means that we have isomorphisms

X∗(H) ∼= X∗(Ȟ) and hence X∗(H) ∼= X∗(Ȟ)

such that the sets Φ and Φ+ of (positive) roots for G are identified with the sets of (positive)
coroots for Ǧ, the sets Φ̌ and Φ̌+ of (positive) coroots for G are identified with the sets of

(positive) roots for Ǧ, and the (̌·) bijections are the same for G and Ǧ. Here X∗ = Hom(C×,−)
and X∗ = Hom(−,C×).

I will also fix throughout an involution δ of the root datum of G, which lifts to a unique
involution of G preserving the pinning, and write δ̌ = −w0δ for the dual involution on Ǧ. The
corresponding extended groups are GΓ = G⋊ {1, δ} and ǦΓ = Ǧ⋊ {1, δ̌}.

1.1. Automorphic side. Define a space

X = {x ∈ GΓ −G | x2 ∈ Z(G) has finite order} ×B

where B = G/B is the flag variety. The H-bundle B̃ = G/N → B pulls back to an H-bundle
π : X̃ → X. For λ ∈ h∗, define

DX,λ = π∗(DX̃)
H ⊗S(h) Cλ−ρ.

The automorphic side of the correspondence is the set

XAut(λ) =

{
irreducible objects in

HC(DX,λ, G)

}
∼=

(Q, γ)

∣∣∣∣∣∣
Q ⊂ X is a G-orbit

γ is an irreducible equivariant
twisted local system on Q

 .

The bijection from right to left is given by intermediate extension.
Relation to version in [ABV]: Note that we can write

HC(DX,λ, G) =
⊕
x

HC(DB,λ, Kx),

where the sum is over conjugacy classes of strong involutions x and Kx = ZG(x) = GAdx . If λ
is integrally dominant, then we have an exact functor

Γ: HC(DB,λ, Kx) → HC(g, Kx)λ

which realises HC(g, Kx)λ as a Serre quotient of the source. If λ is regular, then the functor is
an equivalence.
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1.2. Galois side. Keep λ ∈ h∗ fixed. On the dual side, define another space

X̌λ = {y ∈ ǦΓ − Ǧ | y2 = exp(2πiλ)} × B̌λ,

where B̌λ = Ǧλ/B̌λ, for Ǧλ = ZǦ(exp(2πiλ)) and B̌λ = B̌ ∩ Ǧλ. We also let

Ǧalg = pro-algebraic universal cover of Ǧ

and

Ǧalg
λ = Ǧλ ×Ǧ Ǧalg.

The Galois side of the correspondence is

XGal(λ) =

{
irreducible objects in

HC(DX̌λ
, Ǧalg

λ )

}
∼=

(Q̌, γ̌)

∣∣∣∣∣∣
Q̌ ⊂ X̌λ is a Ǧalg-orbit
γ̌ is an irreducible

equivariant local system on Q̌

 .

Note that we can write

HC(DX̌λ
, Ǧalg) =

⊕
y

HC(DB̌λ
, Ǩalg

λ ),

where the sum is over conjugacy classes of elements y and

Ǩalg
λ = Ǧ

Ady
λ ×Ǧ Ǧalg.

Relation to version in [ABV]: If λ is integrally dominant, then we have a parabolic
subgroup P̌λ ⊂ Ǧλ containing B̌λ with roots

{α̌ ∈ Φ̌ | ⟨λ, α̌⟩ ≤ 0}.

If we set

X̌par
λ = {y ∈ ǦΓ − Ǧ | y2 = exp(2πiλ)} × Ǧλ/P̌λ,

then we have a full abelian subcategory

HC(DX̌par
λ

, Ǧalg
λ ) → HC(DX̌λ

, Ǧalg
λ )

given by pullback.

1.3. The main theorem.

Theorem 1.1 (cf., [ABV, Theorems 1.18 and 1.24]). We have the following.

(1) There is a bijection

LLC: XGal(λ)
∼→ XAut(λ).

(2) The two perfect pairings

K(HC(DX,λ, G))⊗K(HC(DX̌λ
, Ǧalg)) → Z

given by

⟨[j!γ], [j!γ̌]⟩ = (−1)ℓ(γ̌)e(γ̌)δγ,LLC(γ̌)

and

⟨[j!∗γ], j!∗γ̌]⟩ = (−1)ℓ(γ̌)e(γ̌)δγ,LLC(γ̌)

coincide. Here j denotes the inclusion of an orbit, ℓ(γ̌) = ℓ(Q̌, γ̌) = dim Q̌ and e is
Kottwitz’s sign.

(3) If λ is integrally dominant, then the subgroup

K(HC(DX̌par
λ

, Ǧalg
λ )) ⊂ K(HC(DX̌λ

, Ǧalg
λ ))

is the orthogonal complement to the kernel of the quotient map

Γ: K(HC(DX,λ, G)) →
⊕
x

K(HC(g, Kx)λ).
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2. Combinatorics

2.1. Automorphic side. We have

X/G ∼= {strong involutions}/B.

By a theorem of Matsuki, for each strong involution x the Borel subgroup B contains a θx :=
Adx-stable Cartan subgroup. So each strong involution is conjugate by B to one normalising
our chosen Cartan H ⊂ B. If x normalises H, then we have

StabB(x) = B ∩Gθx = (N ∩Gθx)Hθx ,

where N ⊂ B is the unipotent radical of B. An easy exercise with the definitions shows that
the equivariant λ-twisted D-modules on Q = G ·x are identified with Harish-Chandra modules
for the pair (h, StabB(x)) on which h acts by λ+ ρ. Since N ∩Gθx is unipotent, it acts trivially
on any irreducible module, so we obtain the following.

Proposition 2.1. The set XAut(λ) is in natural bijection with{
(x,Λ)

∣∣∣∣x ∈ NG(H)δ/H such that x2 ∈ Z(G) has finite order
Λ ∈ X∗(Hθx) such that dΛ = (λ+ ρ)|hθx

}
.

Here H acts on NG(H)δ by conjugation.

Recall the structure of the group NG(H). We have the exact sequence

1 → H → NG(H) → W → 1.

For each simple root α, we have a canonical lift

s̃α = ϕα

(
0 −1
1 0

)
∈ NG(H)

of the simple reflection sα ∈ W , where ϕα : SL2 → G is the root homomorphism determined by
our chosen pinning.

Lemma 2.2. We have the following.

(1) The group NG(H) is generated by H and s̃α for α simple, subject to the relations

s̃2α = α̌(−1) and s̃αs̃β · · · = s̃β s̃α · · ·
for simple roots α and β, where there are mα,β factors on both sides of the second
relation.

(2) If w ∈ W , define w̃ = s̃α1 s̃α2 · · · s̃αn, where w = sα1sα2 · · · sαn is a reduced word for w.
(This is independent of the choice of reduced word by the braid relations.) Then

NG(H) =
∐
w∈W

Hw̃.

(3) If ww′ = 1 in W , then
w̃w̃′ = (ρ̌− wρ̌)(−1),

where ρ̌ is half the sum of positive coroots.

Using this lemma, we can write the set XAut(λ) as follows.

Proposition 2.3. We have a natural parametrisation

XAut(λ) = {(x = exp(2πih)w̃δ,Λ)}
where

w ∈ W, h ∈ hQ
X∗(H) + (1− wδ)hQ

, and Λ ∈ X∗(H)

(1− wδ)X∗(H)

satisfy the conditions

(2.1) wδ(w) = 1
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(2.2) (1 + wδ)

(
h+

1

2
ρ̌

)
∈ P̌

(1 + wδ)X∗(H)

and

(2.3) λ+ ρ− Λ ∈ (h∗)−wδ

(1− wδ)X∗(H)

Here

hQ := X∗(H)⊗Q

and

P̌ = {h ∈ hQ | ⟨α, h⟩ ∈ Z for all α ∈ Φ}.

Proof. Exercise. Minor remarks:

• (2.1) and (2.2) are equivalent to x2 ∈ Z(G).
• h ∈ hQ is equivalent to x2 has finite order.
• (2.3) is equivalent to dΛ = (λ+ ρ)|hθx .

□

2.2. Galois side. Similarly, we have

Proposition 2.4. The set XGal(λ) is in natural bijection with{
(y, Λ̌)

∣∣∣∣ y ∈ NǦ(Ȟ)δ̌/Ȟ such that y2 = e2πiλ

Λ̌ ∈ X∗(π0(Ȟ
θy)alg)

}
,

where θy = Ady and

(Ȟθy)alg = Ȟθy ×Ǧ Ǧalg.

To write this combinatorially, it will be convenient to use the element −δ = w0δ̌ ∈ NǦ(Ȟ)δ̌
as a base point. Note that

(−δ)2 = 2ρ(−1) ∈ Ȟ.

Proposition 2.5. We have a natural parametrisation

XGal(λ) = {(y = e2πih
′
w̃(−δ), Λ̌)}

where

w ∈ W, h′ ∈ h∗

X∗(H) + (1 + wδ)h∗
, and Λ̌ ∈ P̌wδ

(1 + wδ)X∗(H)

satisfy the conditions

(2.4) wδ(w) = 1,

and

(2.5) λ+
1

2
(1 + wδ)ρ− (1− wδ)h′ ∈ X∗(H)

(1− wδ)X∗(H)
.

Proof. Exercise. Minor remarks:

• I have identified, e.g., ȟ with h∗ etc.
• (2.4) and (2.5) are equivalent to y2 = exp(2πiλ).
• P̌ is the character group of Ȟalg = Ȟ ×Ǧ Ǧalg.

□
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2.3. A bijection. Here is a bijection between the two sides. I am moderately confident it is
the correct one.

Proposition 2.6. The map

(y = exp(2πih′)w̃(−δ), Λ̌) 7→ (x = exp(2πih)w̃δ,Λ)

given by

h =
1

2
(Λ̌− 1

2
(1 + wδ)ρ̌) and Λ = λ+

1

2
(1 + wδ)ρ− (1− wδ)h′

gives a bijection XGal(λ) → XAut(λ), with inverse given by

h′ =
1

2
(λ− Λ) and Λ̌ = (1 + wδ)(h+

1

2
ρ̌).

3. Examples

Let’s see how this plays out for G = SL2 and Ǧ = PGL2.

The root data. For G = SL2, the torus is H = C×, with

X∗(H) = Zϖ and X∗(H) = Zα̌, with ⟨ϖ, α̌⟩ = 1.

The roots and coroots are Φ = {±α} and Φ̌ = {±α̌}, where α = 2ϖ. The coweight lattice is

P̌ = Zϖ̌, where ϖ̌ =
1

2
α̌.

The orbits for G. According to Proposition 2.3, the G-orbits on X are given by x =
exp(2πih)w̃δ, where

• For w = 1, we have h ∈ hQ/X∗(H) = (Q/Z)α̌ such that 2h + ρ̌ ∈ P̌ /2X∗(H), i.e.,
h = 0, α̌/4, α̌/2, 3α̌/4.

• For w = sα, we have h ∈ hQ/(X∗(H) + hQ), i.e., h = 0.

The local systems for G. According to Proposition 2.3, the characters Λ classifying twisted
local systems on the orbits above are:

• For w = 1, Λ ∈ X∗(H) such that λ+ ρ− Λ = 0. So these orbits support a unique local
system if λ ∈ X∗(H) = Zϖ and none otherwise.

• For w = sα, Λ ∈ X∗(H)/2X∗(H) = (Z/2Z)ϖ, with no further condition. So this orbit
always supports two local systems independent of λ.

The blocks for G. Here is a conceptual summary of the above:

Strong real form Orbit x Λ Comment
SU(2, 0) Unique δ λ+ ρ Exists if λ ∈ Zϖ
SU(0, 2) Unique exp(iπα̌)δ λ+ ρ Exists if λ ∈ Zϖ
SL2(R) Closed exp(iπα̌/2)δ λ+ ρ Exists if λ ∈ Zϖ

Closed exp(iπ3α̌/2)δ λ+ ρ Exists if λ ∈ Zϖ
Open s̃αδ 0 Extends if λ ∈ (2Z+ 1)ϖ

ϖ Extends if λ ∈ 2Zϖ.

When λ is integral, there is one interesting block, which corresponds to the two closed orbits
for SL2(R) and the local system on the open orbit that extends.

The orbits for Ǧ. According to Proposition 2.5, the Ǧalg-orbits on X̌λ are given by y =
exp(2πih′)w̃(−δ), where

• For w = 1, we have h′ ∈ h∗/(X∗(H) + h∗), and λ + ρ ∈ X∗(H). So this gives a unique
orbit if λ ∈ X∗(H) and none otherwise.

• For w = sα, we have h′ ∈ h∗/X∗(H) such that λ − 2h′ ∈ X∗(H)/2X∗(H), i.e., h′ =
λ/2, (λ+ϖ)/2. So this contributes two orbits always.
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The local systems for Ǧ. According to Proposition 2.5, the characters Λ̌ parametrising local
systems on the orbits above are

• For w = 1, Λ̌ ∈ P̌ /2X∗(H) = (1
2
Z/2Z)α̌, i.e., Λ̌ = 0, α̌/2, α̌, 3α̌/2. So this orbit supports

4 local systems.
• For w = sα, Λ̌ = 0, so these orbits each support a unique local system.

The blocks for Ǧ. Here is a conceptual summary of the above:

Real group Orbit y Λ̌ Comment
PGL2(R) Open −δ 0 λ ∈ Zϖ, always extends

α̌/2 λ ∈ Zϖ, never extends
α̌ λ ∈ Zϖ, always extends

3α̌/2 λ ∈ Zϖ, never extends
Closed exp(iπλ)s̃α(−δ) 0 λ ∈ (2Z+ 1)ϖ
Closed exp(iπ(λ+ϖ))s̃α(−δ) 0 λ ∈ 2Zϖ

SO3(R) Unique exp(iπ(λ+ϖ))s̃α(−δ) 0 λ ∈ (2Z+ 1)ϖ
Unique exp(iπλ)s̃α(−δ) 0 λ ∈ 2Zϖ

GL1(R) Unique exp(iπ(λ+ϖ))s̃α(−δ) 0 λ ̸∈ Zϖ
GL1(R) Unique exp(iπλ)s̃α(−δ) 0 λ ̸∈ Zϖ

When λ is integral, there is one interesting block, for PGL2(R), consisting of the two extend-
able local systems on the open orbit and the unique local system on the closed orbit.

The correspondence. Here is the bijection between the two sides:

G orbit x Λ Ǧ orbit y Λ̌
SU(2, 0) δ λ+ ρ PGL2(R) open −δ α̌/2
SU(0, 2) exp(iπα̌)δ λ+ ρ PGL2(R) open −δ 3α̌/2

SL2(R) closed exp(iπα̌/2)δ λ+ ρ PGL2(R) open −δ α̌
SL2(R) closed exp(iπ3α̌/2)δ λ+ ρ PGL2(R) open −δ 0
SL2(R) open s̃αδ 0 PGL2(R) closed, λ odd exp(iπλ)s̃α(−δ) 0

SO3(R), λ even
GL1(R), λ /∈ Zϖ

SL2(R) open s̃αδ ϖ PGL2(R) closed, λ even exp(iπ(λ+ϖ))s̃α(−δ) 0
SO3(R), λ odd
GL1(R), λ /∈ Zϖ

Note in particular that the interesting blocks on either side match up.
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	1. Recollection of the statement
	1.1. Automorphic side
	1.2. Galois side
	1.3. The main theorem

	2. Combinatorics
	2.1. Automorphic side
	2.2. Galois side
	2.3. A bijection

	3. Examples
	The root data
	The orbits for G
	The local systems for G
	The blocks for G
	The orbits for 
	The local systems for 
	The blocks for 
	The correspondence

	References

