ADAMS-BARBASCH-VOGAN EXPLICITLY

DOUGAL DAVIS

Aim of today: Make the bijection in the ABV correspondence completely explicit. **Plan:**

- (1) Recollection of the statement (geometric version)
- (2) Combinatorics
- (3) Examples

1. Recollection of the statement

Fix G and \check{G} dual (pinned) reductive groups. "Pinned" means that G and \check{G} are equipped with Cartan and Borel subgroups $H \subset B \subset G$ and $\check{H} \subset \check{B} \subset \check{G}$, and bases for all the simple root spaces $\mathfrak{g}_{\alpha} \subset \mathfrak{g}$ and $\check{\mathfrak{g}}_{\alpha} \subset \check{G}$. I will adopt the convention that roots in B and \check{B} are negative. (I think this is the opposite convention to Qixian.) "Dual" means that we have isomorphisms

$$\mathbb{X}^*(H) \cong \mathbb{X}_*(\check{H})$$
 and hence $\mathbb{X}_*(H) \cong \mathbb{X}^*(\check{H})$

such that the sets Φ and Φ_+ of (positive) roots for G are identified with the sets of (positive) coroots for \check{G} , the sets $\check{\Phi}$ and $\check{\Phi}_+$ of (positive) coroots for G are identified with the sets of (positive) roots for \check{G} , and the $(\check{\cdot})$ bijections are the same for G and \check{G} . Here $\mathbb{X}_* = \operatorname{Hom}(\mathbb{C}^\times, -)$ and $\mathbb{X}^* = \operatorname{Hom}(-, \mathbb{C}^\times)$.

I will also fix throughout an involution δ of the root datum of G, which lifts to a unique involution of G preserving the pinning, and write $\check{\delta} = -w_0 \delta$ for the dual involution on \check{G} . The corresponding extended groups are $G^{\Gamma} = G \rtimes \{1, \delta\}$ and $\check{G}^{\Gamma} = \check{G} \rtimes \{1, \check{\delta}\}$.

1.1. Automorphic side. Define a space

$$X = \{x \in G^{\Gamma} - G \mid x^2 \in Z(G) \text{ has finite order}\} \times \mathcal{B}$$

where $\mathcal{B} = G/B$ is the flag variety. The *H*-bundle $\tilde{\mathcal{B}} = G/N \to \mathcal{B}$ pulls back to an *H*-bundle $\pi : \tilde{X} \to X$. For $\lambda \in \mathfrak{h}^*$, define

$$\mathfrak{D}_{X,\lambda} = \pi_*(\mathfrak{D}_{\tilde{X}})^H \otimes_{S(\mathfrak{h})} \mathbb{C}_{\lambda-\rho}.$$

The automorphic side of the correspondence is the set

$$\mathfrak{X}_{\mathrm{Aut}}(\lambda) = \left\{ \begin{array}{c} \mathrm{irreducible\ objects\ in} \\ \mathrm{HC}(\mathfrak{D}_{X,\lambda},G) \end{array} \right\} \cong \left\{ (Q,\gamma) \ \left| \begin{array}{c} Q \subset X \ \mathrm{is\ a\ }G\text{-orbit} \\ \gamma \ \mathrm{is\ an\ irreducible\ equivariant} \\ \mathrm{twisted\ local\ system\ on\ }Q \end{array} \right\}.$$

The bijection from right to left is given by intermediate extension.

Relation to version in [ABV]: Note that we can write

$$HC(\mathcal{D}_{X,\lambda},G) = \bigoplus_{x} HC(\mathcal{D}_{\mathcal{B},\lambda},K_{x}),$$

where the sum is over conjugacy classes of strong involutions x and $K_x = Z_G(x) = G^{\mathrm{Ad}_x}$. If λ is integrally dominant, then we have an exact functor

$$\Gamma \colon \mathrm{HC}(\mathfrak{D}_{\mathfrak{B},\lambda},K_x) \to \mathrm{HC}(\mathfrak{g},K_x)_{\lambda}$$

which realises $HC(\mathfrak{g}, K_x)_{\lambda}$ as a Serre quotient of the source. If λ is regular, then the functor is an equivalence.

Date: 13 October 2022.

1.2. Galois side. Keep $\lambda \in \mathfrak{h}^*$ fixed. On the dual side, define another space

$$\check{X}_{\lambda} = \{ y \in \check{G}^{\Gamma} - \check{G} \mid y^2 = \exp(2\pi i \lambda) \} \times \check{\mathcal{B}}_{\lambda},$$

where $\check{\mathcal{B}}_{\lambda} = \check{G}_{\lambda}/\check{B}_{\lambda}$, for $\check{G}_{\lambda} = Z_{\check{G}}(\exp(2\pi i\lambda))$ and $\check{B}_{\lambda} = \check{B} \cap \check{G}_{\lambda}$. We also let

 $\check{G}^{alg} = \text{pro-algebraic universal cover of } \check{G}$

and

$$\check{G}_{\lambda}^{alg} = \check{G}_{\lambda} \times_{\check{G}} \check{G}^{alg}.$$

The Galois side of the correspondence is

$$\mathfrak{X}_{\mathrm{Gal}}(\lambda) = \left\{ \begin{matrix} \mathrm{irreducible\ objects\ in} \\ \mathrm{HC}(\mathfrak{D}_{\check{X}_{\lambda}}, \check{G}_{\lambda}^{alg}) \end{matrix} \right\} \cong \left\{ (\check{Q}, \check{\gamma}) \middle| \begin{matrix} \check{Q} \subset \check{X}_{\lambda} \ \mathrm{is\ a}\ \check{G}^{alg}\text{-orbit} \\ \check{\gamma} \ \mathrm{is\ an\ irreducible} \\ \mathrm{equivariant\ local\ system\ on\ } \check{Q} \end{matrix} \right\}.$$

Note that we can write

$$\mathrm{HC}(\mathcal{D}_{\check{X}_{\lambda}},\check{G}^{alg}) = \bigoplus_{y} \mathrm{HC}(\mathcal{D}_{\check{\mathfrak{B}}_{\lambda}},\check{K}_{\lambda}^{alg}),$$

where the sum is over conjugacy classes of elements y and

$$\check{K}_{\lambda}^{alg} = \check{G}_{\lambda}^{\mathrm{Ad}_{y}} \times_{\check{G}} \check{G}^{alg}.$$

Relation to version in [ABV]: If λ is integrally dominant, then we have a parabolic subgroup $\check{P}_{\lambda} \subset \check{G}_{\lambda}$ containing \check{B}_{λ} with roots

$$\{\check{\alpha} \in \check{\Phi} \mid \langle \lambda, \check{\alpha} \rangle \leq 0\}.$$

If we set

$$\check{X}_{\lambda}^{par} = \{ y \in \check{G}^{\Gamma} - \check{G} \mid y^2 = \exp(2\pi i \lambda) \} \times \check{G}_{\lambda} / \check{P}_{\lambda},$$

then we have a full abelian subcategory

$$\mathrm{HC}(\mathcal{D}_{\check{X}^{par}_{\lambda}}, \check{G}^{alg}_{\lambda}) \to \mathrm{HC}(\mathcal{D}_{\check{X}_{\lambda}}, \check{G}^{alg}_{\lambda})$$

given by pullback.

1.3. The main theorem.

Theorem 1.1 (cf., [ABV, Theorems 1.18 and 1.24]). We have the following.

(1) There is a bijection

LLC:
$$\mathfrak{X}_{Gal}(\lambda) \stackrel{\sim}{\to} \mathfrak{X}_{Aut}(\lambda)$$
.

(2) The two perfect pairings

$$K(\mathrm{HC}(\mathcal{D}_{X,\lambda},G))\otimes K(\mathrm{HC}(\mathcal{D}_{\check{X}_{\lambda}},\check{G}^{alg}))\to \mathbb{Z}$$

given by

$$\langle [j_! \gamma], [j_! \check{\gamma}] \rangle = (-1)^{\ell(\check{\gamma})} e(\check{\gamma}) \delta_{\gamma, \text{LLC}(\check{\gamma})}$$

and

$$\langle [j_{!*}\gamma], j_{!*}\check{\gamma}] \rangle = (-1)^{\ell(\check{\gamma})} e(\check{\gamma}) \delta_{\gamma, LLC(\check{\gamma})}$$

coincide. Here j denotes the inclusion of an orbit, $\ell(\check{\gamma}) = \ell(\check{Q}, \check{\gamma}) = \dim \check{Q}$ and e is Kottwitz's sign.

(3) If λ is integrally dominant, then the subgroup

$$K(\mathrm{HC}(\mathfrak{D}_{\check{X}_{\lambda}^{par}}, \check{G}_{\lambda}^{alg})) \subset K(\mathrm{HC}(\mathfrak{D}_{\check{X}_{\lambda}}, \check{G}_{\lambda}^{alg}))$$

is the orthogonal complement to the kernel of the quotient map

$$\Gamma \colon K(\mathrm{HC}(\mathcal{D}_{X,\lambda},G)) \to \bigoplus_x K(\mathrm{HC}(\mathfrak{g},K_x)_{\lambda}).$$

2. Combinatorics

2.1. Automorphic side. We have

$$X/G \cong \{\text{strong involutions}\}/B.$$

By a theorem of Matsuki, for each strong involution x the Borel subgroup B contains a θ_x := Ad_x-stable Cartan subgroup. So each strong involution is conjugate by B to one normalising our chosen Cartan $H \subset B$. If x normalises H, then we have

$$\operatorname{Stab}_{B}(x) = B \cap G^{\theta_{x}} = (N \cap G^{\theta_{x}})H^{\theta_{x}},$$

where $N \subset B$ is the unipotent radical of B. An easy exercise with the definitions shows that the equivariant λ -twisted \mathcal{D} -modules on $Q = G \cdot x$ are identified with Harish-Chandra modules for the pair $(\mathfrak{h}, \operatorname{Stab}_B(x))$ on which \mathfrak{h} acts by $\lambda + \rho$. Since $N \cap G^{\theta_x}$ is unipotent, it acts trivially on any irreducible module, so we obtain the following.

Proposition 2.1. The set $\mathfrak{X}_{Aut}(\lambda)$ is in natural bijection with

$$\left\{ (x,\Lambda) \middle| \begin{array}{l} x \in N_G(H)\delta/H \text{ such that } x^2 \in Z(G) \text{ has finite order} \\ \Lambda \in \mathbb{X}^*(H^{\theta_x}) \text{ such that } d\Lambda = (\lambda + \rho)|_{\mathfrak{h}^{\theta_x}} \end{array} \right\}.$$

Here H acts on $N_G(H)\delta$ by conjugation

Recall the structure of the group $N_G(H)$. We have the exact sequence

$$1 \to H \to N_G(H) \to W \to 1.$$

For each simple root α , we have a canonical lift

$$\tilde{s}_{\alpha} = \phi_{\alpha} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in N_G(H)$$

of the simple reflection $s_{\alpha} \in W$, where $\phi_{\alpha} \colon \operatorname{SL}_2 \to G$ is the root homomorphism determined by our chosen pinning.

Lemma 2.2. We have the following.

(1) The group $N_G(H)$ is generated by H and \tilde{s}_{α} for α simple, subject to the relations

$$\tilde{s}_{\alpha}^2 = \check{\alpha}(-1)$$
 and $\tilde{s}_{\alpha}\tilde{s}_{\beta}\cdots = \tilde{s}_{\beta}\tilde{s}_{\alpha}\cdots$

for simple roots α and β , where there are $m_{\alpha,\beta}$ factors on both sides of the second relation.

(2) If $w \in W$, define $\tilde{w} = \tilde{s}_{\alpha_1} \tilde{s}_{\alpha_2} \cdots \tilde{s}_{\alpha_n}$, where $w = s_{\alpha_1} s_{\alpha_2} \cdots s_{\alpha_n}$ is a reduced word for w. (This is independent of the choice of reduced word by the braid relations.) Then

$$N_G(H) = \coprod_{w \in W} H\tilde{w}.$$

(3) If ww' = 1 in W, then

$$\tilde{w}\tilde{w}' = (\check{\rho} - w\check{\rho})(-1),$$

where $\check{\rho}$ is half the sum of positive coroots.

Using this lemma, we can write the set $\mathfrak{X}_{Aut}(\lambda)$ as follows.

Proposition 2.3. We have a natural parametrisation

$$\mathfrak{X}_{\mathrm{Aut}}(\lambda) = \{(x = \exp(2\pi i h)\tilde{w}\delta, \Lambda)\}$$

where

$$w \in W$$
, $h \in \frac{\mathfrak{h}_{\mathbb{Q}}}{\mathbb{X}_{*}(H) + (1 - w\delta)\mathfrak{h}_{\mathbb{Q}}}$, and $\Lambda \in \frac{\mathbb{X}^{*}(H)}{(1 - w\delta)\mathbb{X}^{*}(H)}$

satisfy the conditions

$$(2.1) w\delta(w) = 1$$

(2.2)
$$(1+w\delta)\left(h+\frac{1}{2}\check{\rho}\right) \in \frac{\check{P}}{(1+w\delta)\mathbb{X}_*(H)}$$

and

(2.3)
$$\lambda + \rho - \Lambda \in \frac{(\mathfrak{h}^*)^{-w\delta}}{(1 - w\delta)\mathbb{X}^*(H)}$$

Here

$$\mathfrak{h}_{\mathbb{O}} := \mathbb{X}_*(H) \otimes \mathbb{Q}$$

and

$$\check{P} = \{ h \in \mathfrak{h}_{\mathbb{Q}} \mid \langle \alpha, h \rangle \in \mathbb{Z} \text{ for all } \alpha \in \Phi \}.$$

Proof. Exercise. Minor remarks:

- (2.1) and (2.2) are equivalent to $x^2 \in Z(G)$.
- $h \in \mathfrak{h}_{\mathbb{Q}}$ is equivalent to x^2 has finite order.
- (2.3) is equivalent to $d\Lambda = (\lambda + \rho)|_{\mathfrak{h}^{\theta_x}}$.

2.2. Galois side. Similarly, we have

Proposition 2.4. The set $\mathfrak{X}_{Gal}(\lambda)$ is in natural bijection with

$$\left\{ (y, \check{\Lambda}) \middle| \begin{array}{c} y \in N_{\check{G}}(\check{H})\check{\delta}/\check{H} \ such \ that \ y^2 = e^{2\pi i \lambda} \\ \check{\Lambda} \in \mathbb{X}^*(\pi_0(\check{H}^{\theta_y})^{alg}) \end{array} \right\},$$

where $\theta_y = Ad_y$ and

$$(\check{H}^{\theta_y})^{alg} = \check{H}^{\theta_y} \times_{\check{G}} \check{G}^{alg}.$$

To write this combinatorially, it will be convenient to use the element $-\delta = w_0 \check{\delta} \in N_{\check{G}}(\check{H})\check{\delta}$ as a base point. Note that

$$(-\delta)^2 = 2\rho(-1) \in \check{H}.$$

Proposition 2.5. We have a natural parametrisation

$$\mathfrak{X}_{Gal}(\lambda) = \{ (y = e^{2\pi i h'} \tilde{w}(-\delta), \check{\Lambda}) \}$$

where

$$w \in W$$
, $h' \in \frac{\mathfrak{h}^*}{\mathbb{X}^*(H) + (1 + w\delta)\mathfrak{h}^*}$, and $\check{\Lambda} \in \frac{\check{P}^{w\delta}}{(1 + w\delta)\mathbb{X}_*(H)}$

satisfy the conditions

$$(2.4) w\delta(w) = 1,$$

and

(2.5)
$$\lambda + \frac{1}{2}(1 + w\delta)\rho - (1 - w\delta)h' \in \frac{\mathbb{X}^*(H)}{(1 - w\delta)\mathbb{X}^*(H)}.$$

Proof. Exercise. Minor remarks:

- I have identified, e.g., $\check{\mathfrak{h}}$ with \mathfrak{h}^* etc.
- (2.4) and (2.5) are equivalent to $y^2 = \exp(2\pi i\lambda)$.
- \check{P} is the character group of $\check{H}^{alg} = \check{H} \times_{\check{G}} \check{G}^{alg}$.

2.3. A bijection. Here is a bijection between the two sides. I am moderately confident it is the correct one.

Proposition 2.6. The map

$$(y = \exp(2\pi i h')\tilde{w}(-\delta), \check{\Lambda}) \mapsto (x = \exp(2\pi i h)\tilde{w}\delta, \Lambda)$$

given by

$$h = \frac{1}{2}(\check{\Lambda} - \frac{1}{2}(1 + w\delta)\check{\rho}) \quad and \quad \Lambda = \lambda + \frac{1}{2}(1 + w\delta)\rho - (1 - w\delta)h'$$

gives a bijection $\mathfrak{X}_{Gal}(\lambda) \to \mathfrak{X}_{Aut}(\lambda)$, with inverse given by

$$h' = \frac{1}{2}(\lambda - \Lambda)$$
 and $\check{\Lambda} = (1 + w\delta)(h + \frac{1}{2}\check{\rho}).$

3. Examples

Let's see how this plays out for $G = SL_2$ and $\check{G} = PGL_2$.

The root data. For $G = \mathrm{SL}_2$, the torus is $H = \mathbb{C}^{\times}$, with

$$\mathbb{X}^*(H) = \mathbb{Z}\varpi$$
 and $\mathbb{X}_*(H) = \mathbb{Z}\check{\alpha}$, with $\langle \varpi, \check{\alpha} \rangle = 1$.

The roots and coroots are $\Phi = \{\pm \alpha\}$ and $\check{\Phi} = \{\pm \check{\alpha}\}$, where $\alpha = 2\varpi$. The coweight lattice is

$$\check{P} = \mathbb{Z}\check{\varpi}, \text{ where } \check{\varpi} = \frac{1}{2}\check{\alpha}.$$

The orbits for G. According to Proposition 2.3, the G-orbits on X are given by $x = \exp(2\pi i h)\tilde{w}\delta$, where

- For w=1, we have $h \in \mathfrak{h}_{\mathbb{Q}}/\mathbb{X}_*(H) = (\mathbb{Q}/\mathbb{Z})\check{\alpha}$ such that $2h + \check{\rho} \in \check{P}/2\mathbb{X}_*(H)$, i.e., $h=0,\check{\alpha}/4,\check{\alpha}/2,3\check{\alpha}/4$.
- For $w = s_{\alpha}$, we have $h \in \mathfrak{h}_{\mathbb{Q}}/(\mathbb{X}_{*}(H) + \mathfrak{h}_{\mathbb{Q}})$, i.e., h = 0.

The local systems for G. According to Proposition 2.3, the characters Λ classifying twisted local systems on the orbits above are:

- For w = 1, $\Lambda \in \mathbb{X}^*(H)$ such that $\lambda + \rho \Lambda = 0$. So these orbits support a unique local system if $\lambda \in \mathbb{X}^*(H) = \mathbb{Z}\varpi$ and none otherwise.
- For $w = s_{\alpha}$, $\Lambda \in \mathbb{X}^*(H)/2\mathbb{X}^*(H) = (\mathbb{Z}/2\mathbb{Z})\varpi$, with no further condition. So this orbit always supports two local systems independent of λ .

The blocks for G. Here is a conceptual summary of the above:

Strong real form	Orbit	x	Λ	Comment
$\overline{\mathrm{SU}(2,0)}$	Unique	δ	$\lambda + \rho$	Exists if $\lambda \in \mathbb{Z}\omega$
SU(0,2)	Unique	$\exp(i\pi\check{\alpha})\delta$	$\lambda + \rho$	Exists if $\lambda \in \mathbb{Z}\omega$
$\mathrm{SL}_2(\mathbb{R})$	Closed	$\exp(i\pi\check{\alpha}/2)\delta$	$\lambda + \rho$	Exists if $\lambda \in \mathbb{Z}\omega$
	Closed	$\exp(i\pi 3\check{\alpha}/2)\delta$	$\lambda + \rho$	Exists if $\lambda \in \mathbb{Z}\omega$
	Open	$ ilde{s}_{lpha}\delta$	0	Extends if $\lambda \in (2\mathbb{Z} + 1)\varpi$
			$\overline{\omega}$	Extends if $\lambda \in 2\mathbb{Z}\omega$.

When λ is integral, there is one interesting block, which corresponds to the two closed orbits for $SL_2(\mathbb{R})$ and the local system on the open orbit that extends.

The orbits for \check{G} . According to Proposition 2.5, the \check{G}^{alg} -orbits on \check{X}_{λ} are given by $y = \exp(2\pi i h')\tilde{w}(-\delta)$, where

- For w = 1, we have $h' \in \mathfrak{h}^*/(\mathbb{X}^*(H) + \mathfrak{h}^*)$, and $\lambda + \rho \in \mathbb{X}^*(H)$. So this gives a unique orbit if $\lambda \in \mathbb{X}^*(H)$ and none otherwise.
- For $w = s_{\alpha}$, we have $h' \in \mathfrak{h}^*/\mathbb{X}^*(H)$ such that $\lambda 2h' \in \mathbb{X}^*(H)/2\mathbb{X}^*(H)$, i.e., $h' = \lambda/2, (\lambda + \varpi)/2$. So this contributes two orbits always.

The local systems for \check{G} . According to Proposition 2.5, the characters $\check{\Lambda}$ parametrising local systems on the orbits above are

- For $w=1, \check{\Lambda} \in \check{P}/2\mathbb{X}_*(H) = (\frac{1}{2}\mathbb{Z}/2\mathbb{Z})\check{\alpha}$, i.e., $\check{\Lambda}=0, \check{\alpha}/2, \check{\alpha}, 3\check{\alpha}/2$. So this orbit supports 4 local systems.
- For $w = s_{\alpha}$, $\Lambda = 0$, so these orbits each support a unique local system.

The blocks for \check{G} . Here is a conceptual summary of the above:

Real group	Orbit	y	$\check{\Lambda}$	Comment
$\overline{\operatorname{PGL}_2(\mathbb{R})}$	Open	$-\delta$	0	$\lambda \in \mathbb{Z}\omega$, always extends
			$\check{\alpha}/2$	$\lambda \in \mathbb{Z}\omega$, never extends
			$\check{\alpha}$	$\lambda \in \mathbb{Z}_{\varpi}$, always extends
			$3\check{\alpha}/2$	$\lambda \in \mathbb{Z}\omega$, never extends
	Closed	$\exp(i\pi\lambda)\tilde{s}_{\alpha}(-\delta)$	0	$\lambda \in (2\mathbb{Z} + 1)\varpi$
	Closed	$\exp(i\pi(\lambda+\varpi))\tilde{s}_{\alpha}(-\delta)$	0	$\lambda \in 2\mathbb{Z}\varpi$
$\overline{\mathrm{SO}_3(\mathbb{R})}$	Unique	$\exp(i\pi(\lambda+\varpi))\tilde{s}_{\alpha}(-\delta)$	0	$\lambda \in (2\mathbb{Z}+1)\varpi$
	Unique	$\exp(i\pi\lambda)\tilde{s}_{\alpha}(-\delta)$	0	$\lambda \in 2\mathbb{Z}\varpi$
$\overline{\mathrm{GL}_1(\mathbb{R})}$	Unique	$\exp(i\pi(\lambda+\varpi))\tilde{s}_{\alpha}(-\delta)$	0	$\lambda \notin \mathbb{Z} \omega$
$\overline{\mathrm{GL}_1(\mathbb{R})}$	Unique	$\exp(i\pi\lambda)\tilde{s}_{\alpha}(-\delta)$	0	$\lambda \notin \mathbb{Z} \omega$

When λ is integral, there is one interesting block, for $\operatorname{PGL}_2(\mathbb{R})$, consisting of the two extendable local systems on the open orbit and the unique local system on the closed orbit.

The correspondence. Here is the bijection between the two sides:

G orbit	x	Λ	\check{G} orbit	y	Λ
SU(2,0)	δ	$\lambda + \rho$	$\operatorname{PGL}_2(\mathbb{R})$ open	$-\delta$	$\check{\alpha}/2$
SU(0,2)	$\exp(i\pi\check{\alpha})\delta$	$\lambda + \rho$	$\operatorname{PGL}_2(\mathbb{R})$ open	$-\delta$	$3\check{\alpha}/2$
$\mathrm{SL}_2(\mathbb{R})$ closed	$\exp(i\pi\check{\alpha}/2)\delta$	$\lambda + \rho$	$\operatorname{PGL}_2(\mathbb{R})$ open	$-\delta$	ď
$\mathrm{SL}_2(\mathbb{R})$ closed	$\exp(i\pi 3\check{\alpha}/2)\delta$	$\lambda + \rho$	$\operatorname{PGL}_2(\mathbb{R})$ open	$-\delta$	0
$\mathrm{SL}_2(\mathbb{R})$ open	$\tilde{s}_{lpha}\delta$	0	$\operatorname{PGL}_2(\mathbb{R})$ closed, λ odd	$\exp(i\pi\lambda)\tilde{s}_{\alpha}(-\delta)$	0
			$SO_3(\mathbb{R}), \lambda \text{ even}$		
			$\mathrm{GL}_1(\mathbb{R}),\lambda\notin\mathbb{Z}\varpi$		
$\mathrm{SL}_2(\mathbb{R})$ open	$ ilde{s}_{lpha}\delta$	$\overline{\omega}$	$\operatorname{PGL}_2(\mathbb{R})$ closed, λ even	$\exp(i\pi(\lambda+\varpi))\tilde{s}_{\alpha}(-\delta)$	0
			$SO_3(\mathbb{R}), \lambda \text{ odd}$		
			$\mathrm{GL}_1(\mathbb{R}),\lambda\notin\mathbb{Z}\varpi$		

Note in particular that the interesting blocks on either side match up.

References

[ABV] J. Adams, D. Barbasch, and D. Vogan. The Langlands classification and irreducible characters for real reductive groups, Birkhäuser Boston, 1992.